GRINS-0.8.0
low_mach_navier_stokes_vms_stab.C
Go to the documentation of this file.
1 //-----------------------------------------------------------------------bl-
2 //--------------------------------------------------------------------------
3 //
4 // GRINS - General Reacting Incompressible Navier-Stokes
5 //
6 // Copyright (C) 2014-2017 Paul T. Bauman, Roy H. Stogner
7 // Copyright (C) 2010-2013 The PECOS Development Team
8 //
9 // This library is free software; you can redistribute it and/or
10 // modify it under the terms of the Version 2.1 GNU Lesser General
11 // Public License as published by the Free Software Foundation.
12 //
13 // This library is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 // Lesser General Public License for more details.
17 //
18 // You should have received a copy of the GNU Lesser General Public
19 // License along with this library; if not, write to the Free Software
20 // Foundation, Inc. 51 Franklin Street, Fifth Floor,
21 // Boston, MA 02110-1301 USA
22 //
23 //-----------------------------------------------------------------------el-
24 
25 
26 // This class
28 
29 // GRINS
30 #include "grins/assembly_context.h"
34 
35 // libMesh
36 #include "libmesh/quadrature.h"
37 
38 namespace GRINS
39 {
40 
41  template<class Mu, class SH, class TC>
43  const GetPot& input )
44  : LowMachNavierStokesStabilizationBase<Mu,SH,TC>(physics_name,input)
45  {
46  return;
47  }
48 
49  template<class Mu, class SH, class TC>
51  {
52  return;
53  }
54 
55  template<class Mu, class SH, class TC>
57  ( bool compute_jacobian,
58  AssemblyContext & context )
59  {
60  this->assemble_continuity_time_deriv( compute_jacobian, context );
61  this->assemble_momentum_time_deriv( compute_jacobian, context );
62  this->assemble_energy_time_deriv( compute_jacobian, context );
63  }
64 
65  template<class Mu, class SH, class TC>
67  ( bool compute_jacobian, AssemblyContext & context )
68  {
69  this->assemble_continuity_mass_residual( compute_jacobian, context );
70  this->assemble_momentum_mass_residual( compute_jacobian, context );
71  this->assemble_energy_mass_residual( compute_jacobian, context );
72  }
73 
74  template<class Mu, class SH, class TC>
76  AssemblyContext& context )
77  {
78  // The number of local degrees of freedom in each variable.
79  const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size();
80 
81  // Element Jacobian * quadrature weights for interior integration.
82  const std::vector<libMesh::Real> &JxW =
83  context.get_element_fe(this->_flow_vars.u())->get_JxW();
84 
85  // The pressure shape functions at interior quadrature points.
86  const std::vector<std::vector<libMesh::RealGradient> >& p_dphi =
87  context.get_element_fe(this->_press_var.p())->get_dphi();
88 
89  libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p}
90 
91  unsigned int n_qpoints = context.get_element_qrule().n_points();
92 
93  for (unsigned int qp=0; qp != n_qpoints; qp++)
94  {
95  libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
96 
97  libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
98  libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
99 
100  libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp );
101 
102  libMesh::Real mu = this->_mu(T);
103 
104  libMesh::Real rho = this->rho( T, this->get_p0_steady( context, qp ) );
105 
106  libMesh::RealGradient U( context.interior_value( this->_flow_vars.u(), qp ),
107  context.interior_value( this->_flow_vars.v(), qp ) );
108  if( this->_flow_vars.dim() == 3 )
109  U(2) = context.interior_value( this->_flow_vars.w(), qp );
110 
111  libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, this->_is_steady );
112 
113  libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp );
114 
115  // Now a loop over the pressure degrees of freedom. This
116  // computes the contributions of the continuity equation.
117  for (unsigned int i=0; i != n_p_dofs; i++)
118  {
119  Fp(i) += tau_M*RM_s*p_dphi[i][qp]*JxW[qp];
120  }
121 
122  }
123 
124  return;
125  }
126 
127  template<class Mu, class SH, class TC>
129  AssemblyContext& context )
130  {
131  // The number of local degrees of freedom in each variable.
132  const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();
133 
134  // Check number of dofs is same for _flow_vars.u(), v_var and w_var.
135  libmesh_assert (n_u_dofs == context.get_dof_indices(this->_flow_vars.v()).size());
136  if (this->_flow_vars.dim() == 3)
137  libmesh_assert (n_u_dofs == context.get_dof_indices(this->_flow_vars.w()).size());
138 
139  // Element Jacobian * quadrature weights for interior integration.
140  const std::vector<libMesh::Real> &JxW =
141  context.get_element_fe(this->_flow_vars.u())->get_JxW();
142 
143  // The pressure shape functions at interior quadrature points.
144  const std::vector<std::vector<libMesh::Real> >& u_phi =
145  context.get_element_fe(this->_flow_vars.u())->get_phi();
146 
147  // The velocity shape function gradients at interior quadrature points.
148  const std::vector<std::vector<libMesh::RealGradient> >& u_gradphi =
149  context.get_element_fe(this->_flow_vars.u())->get_dphi();
150 
151  libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u()); // R_{u}
152  libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v()); // R_{v}
153  libMesh::DenseSubVector<libMesh::Real>* Fw = NULL;
154 
155  if( this->_flow_vars.dim() == 3 )
156  {
157  Fw = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}
158  }
159 
160  unsigned int n_qpoints = context.get_element_qrule().n_points();
161 
162  for (unsigned int qp=0; qp != n_qpoints; qp++)
163  {
164  libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp );
165  libMesh::Real rho = this->rho( T, this->get_p0_steady( context, qp ) );
166 
167  libMesh::RealGradient U( context.interior_value(this->_flow_vars.u(), qp),
168  context.interior_value(this->_flow_vars.v(), qp) );
169 
170  libMesh::RealGradient grad_u = context.interior_gradient(this->_flow_vars.u(), qp);
171  libMesh::RealGradient grad_v = context.interior_gradient(this->_flow_vars.v(), qp);
172  libMesh::RealGradient grad_w;
173 
174  if( this->_flow_vars.dim() == 3 )
175  {
176  U(2) = context.interior_value(this->_flow_vars.w(), qp);
177  grad_w = context.interior_gradient(this->_flow_vars.w(), qp);
178  }
179 
180  libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
181 
182  libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
183  libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
184  libMesh::Real mu = this->_mu(T);
185 
186  libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, this->_is_steady );
187  libMesh::Real tau_C = this->_stab_helper.compute_tau_continuity( tau_M, g );
188 
189  libMesh::Real RC_s = this->compute_res_continuity_steady( context, qp );
190  libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp );
191 
192  for (unsigned int i=0; i != n_u_dofs; i++)
193  {
194  Fu(i) += ( -tau_C*RC_s*u_gradphi[i][qp](0)
195  - tau_M*RM_s(0)*rho*U*u_gradphi[i][qp]
196  + rho*tau_M*RM_s*grad_u*u_phi[i][qp]
197  + tau_M*RM_s(0)*rho*tau_M*RM_s*u_gradphi[i][qp] )*JxW[qp];
198 
199  Fv(i) += ( -tau_C*RC_s*u_gradphi[i][qp](1)
200  - tau_M*RM_s(1)*rho*U*u_gradphi[i][qp]
201  + rho*tau_M*RM_s*grad_v*u_phi[i][qp]
202  + tau_M*RM_s(1)*rho*tau_M*RM_s*u_gradphi[i][qp] )*JxW[qp];
203 
204  if( this->_flow_vars.dim() == 3 )
205  {
206  (*Fw)(i) += ( -tau_C*RC_s*u_gradphi[i][qp](2)
207  - tau_M*RM_s(2)*rho*U*u_gradphi[i][qp]
208  + rho*tau_M*RM_s*grad_w*u_phi[i][qp]
209  + tau_M*RM_s(2)*rho*tau_M*RM_s*u_gradphi[i][qp] )*JxW[qp];
210  }
211  }
212 
213  }
214  return;
215  }
216 
217  template<class Mu, class SH, class TC>
219  AssemblyContext& context )
220  {
221  // The number of local degrees of freedom in each variable.
222  const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();
223 
224  // Element Jacobian * quadrature weights for interior integration.
225  const std::vector<libMesh::Real> &JxW =
226  context.get_element_fe(this->_temp_vars.T())->get_JxW();
227 
228  // The temperature shape functions at interior quadrature points.
229  const std::vector<std::vector<libMesh::Real> >& T_phi =
230  context.get_element_fe(this->_temp_vars.T())->get_phi();
231 
232  // The temperature shape functions gradients at interior quadrature points.
233  const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
234  context.get_element_fe(this->_temp_vars.T())->get_dphi();
235 
236  libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}
237 
238  unsigned int n_qpoints = context.get_element_qrule().n_points();
239 
240  for (unsigned int qp=0; qp != n_qpoints; qp++)
241  {
242  libMesh::Number u, v;
243  u = context.interior_value(this->_flow_vars.u(), qp);
244  v = context.interior_value(this->_flow_vars.v(), qp);
245 
246  libMesh::Gradient grad_T = context.interior_gradient(this->_temp_vars.T(), qp);
247 
248  libMesh::NumberVectorValue U(u,v);
249  if (this->_flow_vars.dim() == 3)
250  U(2) = context.interior_value(this->_flow_vars.w(), qp); // w
251 
252  libMesh::Real T = context.interior_value( this->_temp_vars.T(), qp );
253  libMesh::Real rho = this->rho( T, this->get_p0_steady( context, qp ) );
254 
255  libMesh::Real mu = this->_mu(T);
256  libMesh::Real k = this->_k(T);
257  libMesh::Real cp = this->_cp(T);
258 
259  libMesh::Number rho_cp = rho*this->_cp(T);
260 
261  libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
262 
263  libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
264  libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
265 
266  libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, this->_is_steady );
267  libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, this->_is_steady );
268 
269  libMesh::Real RE_s = this->compute_res_energy_steady( context, qp );
270  libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp );
271 
272  for (unsigned int i=0; i != n_T_dofs; i++)
273  {
274  FT(i) += ( rho_cp*tau_M*RM_s*grad_T*T_phi[i][qp]
275  - rho_cp*tau_E*RE_s*U*T_gradphi[i][qp]
276  + rho_cp*tau_E*RE_s*tau_M*RM_s*T_gradphi[i][qp] )*JxW[qp];
277  }
278 
279  }
280 
281  return;
282  }
283 
284  template<class Mu, class SH, class TC>
286  AssemblyContext& context )
287  {
288  // The number of local degrees of freedom in each variable.
289  const unsigned int n_p_dofs = context.get_dof_indices(this->_press_var.p()).size();
290 
291  // Element Jacobian * quadrature weights for interior integration.
292  const std::vector<libMesh::Real> &JxW =
293  context.get_element_fe(this->_flow_vars.u())->get_JxW();
294 
295  // The pressure shape functions at interior quadrature points.
296  const std::vector<std::vector<libMesh::RealGradient> >& p_dphi =
297  context.get_element_fe(this->_press_var.p())->get_dphi();
298 
299  libMesh::DenseSubVector<libMesh::Number> &Fp = context.get_elem_residual(this->_press_var.p()); // R_{p}
300 
301  unsigned int n_qpoints = context.get_element_qrule().n_points();
302 
303  for (unsigned int qp=0; qp != n_qpoints; qp++)
304  {
305  libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
306 
307  libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
308  libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
309 
310  libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
311  libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );
312 
313  libMesh::Real mu = this->_mu(T);
314 
315  libMesh::RealGradient U( context.fixed_interior_value( this->_flow_vars.u(), qp ),
316  context.fixed_interior_value( this->_flow_vars.v(), qp ) );
317  if( this->_flow_vars.dim() == 3 )
318  U(2) = context.fixed_interior_value( this->_flow_vars.w(), qp );
319 
320  libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, false );
321  libMesh::RealGradient RM_t = this->compute_res_momentum_transient( context, qp );
322 
323  // Now a loop over the pressure degrees of freedom. This
324  // computes the contributions of the continuity equation.
325  for (unsigned int i=0; i != n_p_dofs; i++)
326  {
327  Fp(i) += tau_M*RM_t*p_dphi[i][qp]*JxW[qp];
328  }
329  }
330 
331  return;
332  }
333 
334  template<class Mu, class SH, class TC>
336  AssemblyContext& context )
337  {
338  // The number of local degrees of freedom in each variable.
339  const unsigned int n_u_dofs = context.get_dof_indices(this->_flow_vars.u()).size();
340 
341  // Check number of dofs is same for _flow_vars.u(), v_var and w_var.
342  libmesh_assert (n_u_dofs == context.get_dof_indices(this->_flow_vars.v()).size());
343  if (this->_flow_vars.dim() == 3)
344  libmesh_assert (n_u_dofs == context.get_dof_indices(this->_flow_vars.w()).size());
345 
346  // Element Jacobian * quadrature weights for interior integration.
347  const std::vector<libMesh::Real> &JxW =
348  context.get_element_fe(this->_flow_vars.u())->get_JxW();
349 
350  // The pressure shape functions at interior quadrature points.
351  const std::vector<std::vector<libMesh::Real> >& u_phi =
352  context.get_element_fe(this->_flow_vars.u())->get_phi();
353 
354  // The velocity shape function gradients at interior quadrature points.
355  const std::vector<std::vector<libMesh::RealGradient> >& u_gradphi =
356  context.get_element_fe(this->_flow_vars.u())->get_dphi();
357 
358  libMesh::DenseSubVector<libMesh::Number> &Fu = context.get_elem_residual(this->_flow_vars.u()); // R_{u}
359  libMesh::DenseSubVector<libMesh::Number> &Fv = context.get_elem_residual(this->_flow_vars.v()); // R_{v}
360  libMesh::DenseSubVector<libMesh::Real>* Fw = NULL;
361 
362  if( this->_flow_vars.dim() == 3 )
363  {
364  Fw = &context.get_elem_residual(this->_flow_vars.w()); // R_{w}
365  }
366 
367  unsigned int n_qpoints = context.get_element_qrule().n_points();
368  for (unsigned int qp=0; qp != n_qpoints; qp++)
369  {
370  libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
371  libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );
372 
373  libMesh::Real mu = this->_mu(T);
374 
375  libMesh::RealGradient U( context.fixed_interior_value(this->_flow_vars.u(), qp),
376  context.fixed_interior_value(this->_flow_vars.v(), qp) );
377 
378  libMesh::RealGradient grad_u = context.fixed_interior_gradient(this->_flow_vars.u(), qp);
379  libMesh::RealGradient grad_v = context.fixed_interior_gradient(this->_flow_vars.v(), qp);
380  libMesh::RealGradient grad_w;
381 
382  if( this->_flow_vars.dim() == 3 )
383  {
384  U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp);
385  grad_w = context.fixed_interior_gradient(this->_flow_vars.w(), qp);
386  }
387 
388  libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
389 
390  libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
391  libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
392 
393  libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, false );
394  libMesh::Real tau_C = this->_stab_helper.compute_tau_continuity( tau_M, g );
395 
396  libMesh::Real RC_t = this->compute_res_continuity_transient( context, qp );
397  libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp );
398  libMesh::RealGradient RM_t = this->compute_res_momentum_transient( context, qp );
399 
400  for (unsigned int i=0; i != n_u_dofs; i++)
401  {
402  Fu(i) -= ( tau_C*RC_t*u_gradphi[i][qp](0)
403  + tau_M*RM_t(0)*rho*U*u_gradphi[i][qp]
404  - rho*tau_M*RM_t*grad_u*u_phi[i][qp]
405  - tau_M*(RM_s(0)+RM_t(0))*rho*tau_M*RM_t*u_gradphi[i][qp]
406  - tau_M*RM_t(0)*rho*tau_M*RM_s*u_gradphi[i][qp] )*JxW[qp];
407 
408  Fv(i) -= ( tau_C*RC_t*u_gradphi[i][qp](1)
409  - rho*tau_M*RM_t*grad_v*u_phi[i][qp]
410  + tau_M*RM_t(1)*rho*U*u_gradphi[i][qp]
411  - tau_M*(RM_s(1)+RM_t(1))*rho*tau_M*RM_t*u_gradphi[i][qp]
412  - tau_M*RM_t(1)*rho*tau_M*RM_s*u_gradphi[i][qp] )*JxW[qp];
413 
414  if( this->_flow_vars.dim() == 3 )
415  {
416  (*Fw)(i) -= ( tau_C*RC_t*u_gradphi[i][qp](2)
417  - rho*tau_M*RM_t*grad_w*u_phi[i][qp]
418  + tau_M*RM_t(2)*rho*U*u_gradphi[i][qp]
419  - tau_M*(RM_s(2)+RM_t(2))*rho*tau_M*RM_t*u_gradphi[i][qp]
420  - tau_M*RM_t(2)*rho*tau_M*RM_s*u_gradphi[i][qp] )*JxW[qp];
421  }
422  }
423 
424  }
425  return;
426  }
427 
428  template<class Mu, class SH, class TC>
430  AssemblyContext& context )
431  {
432  // The number of local degrees of freedom in each variable.
433  const unsigned int n_T_dofs = context.get_dof_indices(this->_temp_vars.T()).size();
434 
435  // Element Jacobian * quadrature weights for interior integration.
436  const std::vector<libMesh::Real> &JxW =
437  context.get_element_fe(this->_temp_vars.T())->get_JxW();
438 
439  // The temperature shape functions at interior quadrature points.
440  const std::vector<std::vector<libMesh::Real> >& T_phi =
441  context.get_element_fe(this->_temp_vars.T())->get_phi();
442 
443  // The temperature shape functions gradients at interior quadrature points.
444  const std::vector<std::vector<libMesh::RealGradient> >& T_gradphi =
445  context.get_element_fe(this->_temp_vars.T())->get_dphi();
446 
447  libMesh::DenseSubVector<libMesh::Number> &FT = context.get_elem_residual(this->_temp_vars.T()); // R_{T}
448 
449  unsigned int n_qpoints = context.get_element_qrule().n_points();
450 
451  for (unsigned int qp=0; qp != n_qpoints; qp++)
452  {
453  libMesh::Number u, v;
454  u = context.fixed_interior_value(this->_flow_vars.u(), qp);
455  v = context.fixed_interior_value(this->_flow_vars.v(), qp);
456 
457  libMesh::Gradient grad_T = context.fixed_interior_gradient(this->_temp_vars.T(), qp);
458 
459  libMesh::NumberVectorValue U(u,v);
460  if (this->_flow_vars.dim() == 3)
461  U(2) = context.fixed_interior_value(this->_flow_vars.w(), qp); // w
462 
463  libMesh::Real T = context.fixed_interior_value( this->_temp_vars.T(), qp );
464  libMesh::Real rho = this->rho( T, this->get_p0_transient( context, qp ) );
465 
466  libMesh::Real mu = this->_mu(T);
467  libMesh::Real k = this->_k(T);
468  libMesh::Real cp = this->_cp(T);
469 
470  libMesh::Number rho_cp = rho*this->_cp(T);
471 
472  libMesh::FEBase* fe = context.get_element_fe(this->_flow_vars.u());
473 
474  libMesh::RealGradient g = this->_stab_helper.compute_g( fe, context, qp );
475  libMesh::RealTensor G = this->_stab_helper.compute_G( fe, context, qp );
476 
477  libMesh::Real tau_M = this->_stab_helper.compute_tau_momentum( context, qp, g, G, rho, U, mu, false );
478  libMesh::Real tau_E = this->_stab_helper.compute_tau_energy( context, qp, g, G, rho, U, k, cp, false );
479 
480  libMesh::Real RE_s = this->compute_res_energy_steady( context, qp );
481  libMesh::Real RE_t = this->compute_res_energy_transient( context, qp );
482 
483  libMesh::RealGradient RM_s = this->compute_res_momentum_steady( context, qp );
484  libMesh::RealGradient RM_t = this->compute_res_momentum_transient( context, qp );
485 
486  for (unsigned int i=0; i != n_T_dofs; i++)
487  {
488  FT(i) -= ( -rho_cp*tau_M*RM_t*grad_T*T_phi[i][qp]
489  +rho_cp*tau_E*RE_t*U*T_gradphi[i][qp]
490  - rho_cp*tau_E*(RE_s+RE_t)*tau_M*RM_t*T_gradphi[i][qp]
491  - rho_cp*tau_E*RE_t*tau_M*RM_s*T_gradphi[i][qp] )*JxW[qp];
492  }
493 
494  }
495 
496  return;
497  }
498 
499 } // namespace GRINS
500 
501 // Instantiate
virtual void element_time_derivative(bool compute_jacobian, AssemblyContext &context)
Time dependent part(s) of physics for element interiors.
Adds VMS-based stabilization to LowMachNavierStokes physics class.
virtual void mass_residual(bool compute_jacobian, AssemblyContext &context)
Mass matrix part(s) for element interiors. All boundary terms lie within the time_derivative part...
GRINS namespace.
void assemble_energy_time_deriv(bool compute_jacobian, AssemblyContext &context)
void assemble_momentum_mass_residual(bool compute_jacobian, AssemblyContext &context)
Adds VMS-based stabilization to LowMachNavierStokes physics class.
void assemble_momentum_time_deriv(bool compute_jacobian, AssemblyContext &context)
void assemble_continuity_mass_residual(bool compute_jacobian, AssemblyContext &context)
void assemble_continuity_time_deriv(bool compute_jacobian, AssemblyContext &context)
void assemble_energy_mass_residual(bool compute_jacobian, AssemblyContext &context)

Generated on Tue Dec 19 2017 12:47:28 for GRINS-0.8.0 by  doxygen 1.8.9.1